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ABSTRACT

The Sandusky subbasin is separated from the remainder of the central basin of
Lake Erie by the submerged Pelee-Lorain Moraine. Sediment vibratory cores
were collected during 1981 in the southern part of the subbasin. Descriptive
core logs, textural data, and distribution maps of the units show that deposits in
the shallow nearshore areas and on the crest of the adjacent Pelee-Lorain
Moraine are primarily composed of sand, apparently winnowed from the
underlying till. In the deeper areas of the subbasin, the glacial unit (made up of
till and glacio-lacustrine clay) underlies a unique soft gray mud. The soft gray
mud was deposited in the post-glacial lake, as a transgressing unit, during its
return to the basin. The level of this lake was controlled by the isostatic
rebound of the sill on the Niagara Escarpment. Deposition of the unit continued
in the post-glacial lake until the return of the upper-lake drainage through the
Erie basin. The return of the upper-lake drainage to the Erie basin partly
eroded the soft gray mud, added sand and organics from the eroding shore and
deposited a shelly-sandy silt transition sequence. Finally this section of
transition sediments was covered by a poorly consolidated fluid mud/silt that

continues to accumulate today.
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INTRODUCTION
PURPOSE AND SCOPE

The purpose of this investigation is to utilize information from cores to improve
the surficial sediment maps of a portion of Lake Erie and provide data for
shallow subsurface sediment maps. These maps will elucidate the post-glacial
history of the Erie basin, and will allow evaluation of the area for sand deposits
that may be of commercial value. The cores, which were taken in 1981, have
since been used to help plan seismic-survey line locations. The offshore
seismic-framework program was conducted in the early 1990's (Fuller and
others, 1995) as part of the cooperative coastal study of the Ohio Geological
Survey and the U.S. Geological Survey.

PHYSICAL SETTING

The study area includes 650 sq. kilometers of the southwest corner of Lake
Erie's central basin (figs. 1, 2). Bedrock crops out along the western shore in
bluffs as high as 6 meters (Pincus, 1960). The shore from Bay Point to Sawmill
Creek (fig. 2) is dominated by a sand-spit barrier-beach complex that has a
maximum relief of 4.5 meters (Carter and Guy, 1980). The shoreline from
Sawmill Creek to just east of Vermilion is dominated by glacial deposits.
Glacial-lacustrine sediments are most common west of Huron, in bluffs no
more than 4.5 meters high. Till capped by a glacial-lacustrine unit is most
common east of Huron, exposed in bluffs as high as 9 meters (Carter and Guy,
1980).

Bathymetry of the area outlines a small basin that extends northward into
Canada and has an outlet at its southeastern corner. The basin is bordered on
the south and west by the rise to land, and to the east by the rise onto the
submerged Pelee-Lorain Moraine (Thomas and others, 1976; Sly, 1976),
although the northeast corner of the study area extends across the crest of the
moraine and into the main part of the central basin (fig. 2).

Resio and Vincent (1976) used wind data from around the basin to hindcast
wave conditions at fixed locations during storms on Lake Erie and calculated
their recurrence frequencies. Their hindcast 5-year deep-water waves (Resio
and Vincent, 1976) are predicted to be large enough so that all of the study
area is within wave base. Real world measurements of waves and winds from
the NOAA weather buoy located 16 kilometers ENE of Kelleys Island (U.S.
Department of Commerce) between July 1980 and December 1983, recorded a
maximum wave of 3.0 meters and nine other events with waves as high as 2.5
meters. The maximum wind speed was 34 knots (17.0 m/sec) from the south
during one of the 2.5 meter wave events. These real wave measurements again
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point out the susceptibility of the bottom sediments to wave energy, and also
indicate that the activity is not limited to storm winds from the lake's greatest
fetch.

GEOLOGIC SETTING

Bedrock in the study area dips gently to the southeast as part of the east flank
of the Findlay Arch (Herdendorf and Braidech, 1972). Bedrock along the west
edge of the study area is a complex of Lower and Middle Devonian carbonates,
whereas the bedrock of most of the area is part of the Upper Devonian Ohio
Shale. An unconformity marks the top of the tilted Devonian rocks, with the
overlying material being variably Pleistocene or Holocene.

During the Pleistocene Epoch, the area was covered by at least four major ice
sheets, each of which was presumably followed by a series of proglacial lakes
and subaerial exposure (Forsyth, 1971). The last set of these proglacial lakes
began forming when the ice retreated from the Fort Wayne Moraine about
14,000 years BP. These lakes were held at a variety of levels depending on
which outlet served as the drain. Abandoned shorelines can be seen perched
on the landscape throughout the area as sand ridges. These sand ridges were
the beaches, dunes, and offshore sand bars being deposited at the shore of
these lakes. Glacial-lacustrine clays were being deposited in the more open
water regions of the lakes and were burying the tills that had been previously
deposited by the glacier. The proglacial lakes dominated the area until the ice
front finally melted back from the Niagara Escarpment about 12,000 years BP.
Following the final retreat of the ice from the Erie Basin, the central basin was
effectively drained (Sly, 1976). The basin then began to re-flood because of the
isostatic rebound of the outlet over the Niagara Escarpment (Lewis, 1969). The
rebound caused an increasing sill elevation for the basin and caused a slowly
deepening lake to occupy the Basin. Lake level briefly stabilized somewhere
below present level (Forsyth, 1973; Lewis, 1969), temporally forming a
restricted shallow lake environment. About 4,000 years BP, a rapid rise in lake
level effectively set the stage for the environmental systems that are still in
existence today. This rapid rise was caused by the full restoration of the runoff
from the Upper Great Lakes drainage through the Detroit River (Sly, 1976), and
by climate change (Forsyth, 1973).

PREVIOUS WORK

Surficial sediment information and/or maps of the region were reported by
Hartley (1960, 1961a, 1961b), Herdendorf and Braidech (1972), Herdendorf
and others (1978), Lewis (1966), Sly and Lewis (1972) and Kemp and others
(1977), Pincus (1960), U.S. Army Corps of Engineers (1953a, 1953b), Carter
and Guy (1980), Williams and others (1980), and Fuller (1983, 1987, in prep.).
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Subbottom sediment information has been provided by Morgan (1964), Lewis
(1966), Kemp (1969), Kemp and others (1974), Herdendorf and Braidech
(1972), and Fuller (in prep.). Limited seismic reflection coverage of the area
was included in work by Morgan (1964), Lewis (1966), Wall (1968), Hobson and
others (1969), Williams and others (1980), Carter and others (1982), and Fuller
and others (1995).

METHODS

FIELD

A three-minute latitude/longitude grid was used to plan the coring stations (fig.
2). Field positioning and modifications of this grid were made with a Loran-C
navigation system (chain 9960, stations Y and Z). The NOAA-NOS navigation
chart (No. 14830) for the west end of Lake Erie with the Loran-C overprint was
used as a base map.

At each station, a line depth, surface-sediment sample, and sediment core were
taken. Sediment cores were retrieved using a 3-meter pneumatic vibratory
coring device (Fuller and Meisburger, 1982) which was lowered to the bottom
with only a lifting cable and air line connecting it to the vessel. The corer used
a 2-inch PVC pipe as a combined core barrel and liner. Vertical control of the
field bathymetry was done by relating them to the closest NOAA/NOS water
level gauge (Marblehead or Cleveland). All elevations were then reduced to
LWD (low water datum), relative to the 1955, IGLD (International Great Lakes
Datum). Penetration and recovery of the sediment cores throughout the area
were excellent except in the till and laminated glacial deposits. These deposits
were firm enough or contained enough large gravel or boulders to stop
penetration of the corer after only a short section of that sediment was
penetrated.

LABORATORY

Cores were split first by cutting the core tube walls with a circular saw on
opposite sides of the core, then a piece of stainless steel wire was drawn
through the sediment to part it into longitudinal halves. A short section of the
sediment near, the top of each core was disturbed or lost due to the coring
technique, but the internal structures throughout the remainder of the core
were well preserved. A visual description and measurements of the unconfined
compressive strength and shear strength were made. Representative samples
were taken with a stainless steel spatula, put into beakers, weighed, dried (at <
80°C), and reweighed to determine water content for each of the major
sediment units. Generalized logs of the cores, which include the above
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mentioned measurements as well as additional information, are included in
Appendix A. Serial black-and-white photos were also taken of each core.

Fifty-four of the samples that were dried for water content values were later
subsampled for size analysis. The Rukavina and Duncan (1970) F.A.S.T.
technique for sediment texture analyses was used. This technique begins with
a modified pipette analysis (modified from Folk, 1965) to break samples into
sand/silt/clay percentages. If the sand fraction accounted for more than 7.5
weight percent (as it did in 19 samples), then that fraction was separated by
wet sieving through a 4.5¢ sieve, and further analyzed in a Visual
Accumulation Tube (VAT) (Guy, 1969). The 4.5¢ sieve is used not because it is
a textural boundary, but because "Inclusion of the class below the sand-silt
boundary in the settling tube analysis ensures that heavy minerals smaller
that the 0.063mm sieve size but with a hydraulic size greater than 0.063mm
will be represented. This is necessary if the sand-silt boundaries of both
methods are to be compatible." (Rukavina and Duncan, 1970). A summary of
the results of the grain-size analyses is included in Appendix B.

SEDIMENT UNIT DESCRIPTIONS AND DISTRIBUTION

SEQUENCE OF DEPOSITS

Till and laminated glacial sediments are the basal unit encountered in the
cores, presumably these are directly overlying bedrock, as can be seen onshore.
Including these glacial deposits, there are two general sediment sequences in
the cores (fig. 3). In the shallower areas, the glacial deposits are covered by
sand or sandy sediments. In deeper areas, the glacial deposits are covered by
the soft gray mud that is in turn covered by fluid mud/silt. The change, from
soft gray mud to fluid mud/silt, is made through a transition unit that
commonly includes an admixture of shell fragments, sand, and organic
mateial.

TILL AND LAMINATED GLACIAL SEDIMENTS

The lodgement tills (fig. 4) had an average size distribution of 22% sand, 38%
silt, and 40% clay. The laminated till (fig. 5) had a similar size distribution
(17% sand, 41% silt, and 42% clay) placing them both into the sandy mud field
(Folk, 1965). In contrast, the average size distribution of the glacial-lacustrine
clay (fig. 6) was 4% sand, 39% silt, and 57% clay placing it into the mud field
(fig. 7). Well-defined trends in shear strength or compressive strength were not
seen but the water content values (wt. water/wt. wet sample) of the glacial-
lacustrine clays consistently averaged higher (24%) than those of the lodgement
and laminated tills (both 17%). A structure-contour map of the glacial surface
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.shows that the basin is centered near the center of the study area (fig. 8). The
glacial surface was sampled along the east, south, and west sides of the study
area, but was not penetrated along most of the north edge where the Sandusky
subbasin continues northward out of the study area.

SOFT GRAY MUD

All of the cores which did not bottom in glacial material ended in a soft gray
mud (fig. 9), while three of thé cores that did end in glacial sediments passed
through a section of soft gray mud (CBC 15, 22, 27). Eighteen grain-size
analyses on sediment from this unit were done with the results showing an
average of 2% sand, 51% silt and 47% clay (fig. 7). Compressive strength and
shear-strength values were both effectively zero and the water content of 48
samples averaged 38% (range, 30% to 45%). A generalized description is a
soft, dark-gray (5Y 4/1) mud, with sparse pods or laminae of silt and organic-
rich material, commonly containing in situ, articulated, Sphaerium bivalves (fig.
9). That these fragile bivalves were still articulated implies that they are in life
position. The soft gray mud was found in all of the cores from the central
portion of the Sandusky subbasin as well as in two of the four cores from the
east flank of the Pelee-Lorain Moraine (fig. 10).

TRANSITION UNIT

The transition unit ranges, when present, up to more than 1.8 meters thick. In
8 cores, the transition from soft gray mud to the overlying fluid mud/silt is
represented by an abrupt but subtle color break (5Y 4/1 to 5Y 3/1) (fig. 11).
Size analyses from both sides of this color break (core CBC 36) show little
change in weight percent sand but a significant increase in silt from the soft
gray mud, (% sand/silt/clay, T/50/50), to the fluid mud/silt, (1/71/28). A
thin transition section, marked by an admixture of shells and shell fragments
(mostly broken Sphaerium), can be seen in core CBC 10 (fig. 12). The
transition unit becomes more obvious as the percentage of coarser material
increases, and as the thickness of the unit increases; for example in CBC 21
(fig. 13) the transition is marked by shell fragments with the addition of some
sand and silt. Texturally, the transition unit (fig. 7) is a silt or sandy silt (Folk,
1965). The distribution of the texturally diverse transition unit, as with the
soft gray mud, is primarily limited to the central portion of the Sandusky
subbasin and to cores from the east flank of the Pelee-Lorain Moraine (fig. 14).

FLUID MUD/SILT

The fluid mud/silt (fig. 10), where present, is the uppermost sediment unit in
the cores. On average, it is composed of 6% sand, 67% silt, and 27% clay (fig.



7), is very dark gray (5Y 3/1), and has no measurable shear or compressive
strength. Water content averages 41% in 25 samples and ranges from 27% to
56% (wet sample weight). Distribution of the fluid mud/silt is similar to that of
the soft gray mud and transition units. It fills in the low spots to mute the
relief of the subbasin. It is not present on the crest of the Pelee-Lorain
Moraine, but does occur on both of its sides (fig. 15).

SAND

Eight cores have sand at the top. Visual descriptions of these range from
coarse to fine sand (see core logs, Appendix A). Textural analyses of sand from
three cores on the moraine (CBC 7, 8, 9) ranged from sand/silt/clay
percentages of 97/2/1 on top of the moraine to 52/30/18 for a sample from
the east flank of the moraine (fig. 7). This represents the textural fields of sand,
muddy sand, and silty sand (Folk, 1965). The distribution of offshore surficial
sands is limited to near the Pelee-Lorain Moraine (fig. 15) and to a small area
near Kelleys Island (CBC 25). The best-sorted and coarsest sands come from
the west flank of the moraine.

DEPOSITIONAL HISTORY AND SUMMARY

The till, laminated till, and glacial-lacustrine clays are associated with the
minor re-advances and overall retreat of the last Wisconsinan ice sheet (Totten
and Pavey, personal comm.). Following the final retreat of the ice from the
Niagara Escarpment (about 12,600 years BP) the deep proglacial lakes that had
submerged the study area, were drained (Sly, 1976). During subaerial
exposure, the area contained small shallow ponds and developed a fluvial
system. The river that drained the western basin flowed southward through
the Sandusky subbasin and then east into a channel cut through the
Pelee-Lorain Moraine near its southern end (Sly, 1976; Williams and others,
1980).

With isostatic rebound, the lake returned to the area by about 10,000 years
BP, when the water reached a level of 13.7 meters below LWD (Lewis, 1969;
Coakley and Lewis, 1985). At this elevation, most of the study area, except the
moraine and the nearshore areas to the south and west, would have been
flooded, allowing lacustrine deposition of the soft gray mud. The exact nature
of the remaining geologic history depends on which of the lake level rebound
curves is used for interpretation (fig. 16).

Using the Lewis (1969) curve, the sequence of events begins with a slow
rebound of about 3 meters over the next 5,500 years. This allowed time for
shallow lake environments to become established. The till at the surface of the

6



‘moraine was eroded, winnowed of fines, and a sand beach formed. The lake
with its associated beach environments, slowly transgressed up and across the
moraine crest (Fuller, 1984; in prep.). Nearshore silts and sands accumulated
around the margin of the partly submerged Sandusky subbasin. The soft gray
mud accumulated in the protected subbasin, connecting channel, and central
basin east of the moraine. The Lewis (1969) curve suggests that at about 4,500
years BP the water level started a rapid rise of about 7.9 meters. The great
influx of water associated with the rapid rise in lake level was most likely the
agent responsible for the sediment unit described here as the transitional unit.
This unit is made up of material eroded from the subaerially exposed deposits
(sands, silts, and organic sediments) and mixed with broken shells winnowed
from the upper part of the soft gray mud.

The scenario of events suggested by the Coakley and Lewis (1985) curve (fig.

16) is only slightly different. It suggests that the lake level continued to rise
rapidly until about 8,000 years BP reaching a level of about 6.1 meters below
LWD. During the rapid rise, glacial sediments were winnowed of fines leaving a
sand lag that built a transgressing sand beach. This beach was pushed rapidly
up and over the moraine flank. Elsewhere, nearshore silts and sands
accumulated at the margin of the subbasin, and the soft gray mud
accumulated in the subbasin, in the connecting channel, and in the central
basin (east of the moraine). At some point, the crest of the moraine was
submerged and the beach was pushed across the moraine's crest. The
elevation of the moraine surface continued to be reduced by the planing action
of the waves, and the sand continued to be pushed off into deeper water on the
west side. This scenario suggests that most of the erosion of the moraine
occurred from about 8,000 to 4,500 years BP while the water level remained
stable at about 6.1 meters below LWD. During this period the moraine
elevation was reduced to about 12.4 meters below LWD. The Coakley and
Lewis (1985) curve suggests that at about 4,500 years BP, the water level made
a rapid rise of about 9.8 meters and peaked about 4.9 meters above LWD. The
peak was followed by a rapid decline to about 3.4 meters below LWD about
2,800 years BP. Again in this scenario, the great influx of water associated
with the rapid variation of lake level, is the most likely agent responsible for the
variety of sediment sections described here as the transitional unit. Sequences
for the Barnett (1985) curve are similar to the others up to this point.

Probable correlative transition units have been noted by other authors. Kemp
(1969) reported an upward increase in organic carbon across a horizon 0.3
meters below the sediment surface in a core taken between this study's core
locations CBC 28 and 30. Lewis (1969), logged a similar color change 1.6
meters below the surface of a core from 32 km NNW of Kelleys Island. He
described articulated bivalves in the sediments from below the color change,
and described the unit with the color change as containing shell fragments and
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organic silt. The organic silt, which showed evidence of transport, had a
radiocarbon date of 5750 + 180 years BP (Lewis, 1969) and a pollen age of
5,000 to 4,000 years BP (Coakley and Lewis 1985). Lewis (1969) also
correlated this horizon with increased drainage through the Erie basin from the
upper-lakes.

Following the rapid changes of lake level that brought the lake to within about
3 meters below LWD, the rate of rise again slowed so there has been only 3.7
meters of rebound in the past 3,600 to 2,800 years (Lewis, 1969; Coakley and
Lewis, 1985, respectively). Except for the transgressing shoreline that has
followed the 3.7 meter rise, the present depositional environments have
effectively been established since the end of the period of rapid lake level
changes. These environments include: the high energy nearshore where there
is sand, except in areas of rock ledges; a lower-energy fluid mud/silt
accumulation near the basin center; and the inactive sand lag of the
abandoned beach and nearshore complex on the crest and flanks of the
moraine (this area is kept clear of the modern fluid mud/silt deposition by
water movement due in part to wave activity). The scenario suggested by the
Barnett (1985) curve still has levels decreasing from their high levels, rather
than increasing to the present lake level. This would suggest a present
regressive shore but would not significantly change the distributions of the
modern environments.

The dramatic decrease in abundance of Sphaerium above the transition unit
suggests that the present environment is not as hospitable for their growth as
the environment during the slow rise of the lake level. The darker color of the
fluid mud/silt may be caused by an increase in the entrained organic material
due to lack of removal by the bivalves.

In summary the structure of the glacial surface clearly defines the subbasin
morphology with the Pelee-Lorain Moraine restricting the east side from the
remainder of the central basin. After the proglacial lake drained, the reduced
water supply created a fluvial environment that drained through the southern
end of the moraine with subaerial environments elsewhere. Little evidence of
this environment exists in the cores except for a lag of sand and gravel at the
surface of the glacial unit in some of the cores. Although information from
these cores does not support a specific lake-level recovery curve, it does add
support to the general idea of the curves. The distribution and population of
Sphaerium in the soft gray mud support the interpretation that the unit is a
post-glacial lake deposit tied to the return of a lake to the basin. Associated
with this was the erosion of the shallower moraine where sand, being
winnowed from the till, was pushed up the east side of the moraine and finally
over the crest. The abrupt change in the environment, represented by the
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transition unit, supports the abrupt change in water levels caused by the
addition of the upper-lake drainage. Erosion of the suddenly submerged shore
deposits, their transport into the basin where they were added to the winnowed
shell fragments of the eroded surface of the soft gray mud, was a short-lived
environment. When stability of the water levels returned, deposition of the
fluid mud/silt took over in the subbasin center. The moraine crest remains
free of the fluid mud/silt due to the water movements affecting this slightly
shallower area.

SOFT GRAY MUD CONUNDRUM

In this report the soft gray mud is attributed to deposition in the post-glacial
shallow lakes ponded by the isostatically rebounding Niagara Escarpment.
Whereas in Fuller and others (1995) the soft clay unit, equivalent here to the
soft gray mud, with articulated Sphaeriumn, was included in the glacial-related
sediment section because it was presumed to be a facies of the laminated
glacial-lacustrine clays deposited at the distal end of the icebound lakes. This
interpretation was due primarily to the correlation of the upper seismic
reflector (Fuller and others, 1995) with the transition unit in some of the cores,
as well as the expectation of having a seismic reflector representing the surface
exposed subaerially due to the draining of the lake. It was further postulated
that any post-glacial sediments, subaerial or shallow lake, which accumulated
between the draining of the basin and the re-occupation of the basin by a lake
could have been stripped away from the subaerial surface and incorporated
into the building of the transition unit when the drainage of the upper-lakes
returned to the Lake Erie basin.

Discussions with M. Tevesz (personal comm., 1995) have raised questions
regarding this interpretation of the soft gray mud. Work in progress with Dr.
Tevesz and others is expected to help resolve the depositional environment of
the soft gray mud. The soft gray mud is more likely to have been deposited in
the post-glacial, shallow lakes that were ponded by the isostatically rebounding
Niagara Escarpment rather than in the ice-dammed proglacial lakes. The lack
of exposures of the soft gray mud above the laminated glacial-lacustrine clays
throughout western Ohio suggests that they were not as widespread a deposit
as would be expected if they were a distal facies of the proglacial lacustrine
clays. In addition the identification of the Sphaerium as Sphaerium striatinum
(M. Tevesz, personal comm., 1995), a relatively shallow and warmer-water
species, suggests that this is another problem with the cold and deep proglacial
lake environment interpretation. The problem that remains with the post-
glacial lake interpretation is the perplexing lack of a seismic horizon
representing the subaerial surface that was produced by the draining of the



proglacial lakes. Reinterpretation of the seismic records may show that the
thickness of the "glacial related deposits" needs to be reduced, and the
thickness of the "recent deposits" need to be increased from those reported by
Fuller and others (1995).

SAND RESOURCES

None of the cores intersected buried sand deposits that can be considered
commercial in size. The surficial sand deposits seen in the cores are extremely
limited in extent and thickness and most of the sand is associated with the
Pelee-Lorain Moraine. A closer-spaced sampling grid across the moraine would
more clearly define the surface area and vertical extent of the sand and make
revision of Hartley's (1960) volume projections possible. Restricted areas of
thicker accumulations of sand should be present if there is the expected
northward continuation of the depositional sequences proposed for the
southern end of the moraine (Fuller 1984; in prep.). In summary, this
sequence of events has sand winnowed from the till forming a beach. The
beach increased in size as the water level moved up and over the top of the
moraine. This resulted in a relatively thick but narrow deposit of sand
stranded in deeper water along the west margin of the moraine and a thinner
lag of sand left covering the east flank. If, in fact, there is a continuation of
this sequence from the southern end of Pelee-Lorain Moraine, then a thicker
sand section would be expected in a narrow band just west of the moraine
crest but cores representing the deposit are spaced so widely that an attempt
to calculate volumes is not presently practical.
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APPENDIX A

Core Logs

Core # -- Core number, see figure 2 for location

Water depth field -- field measured water depth in feet

Water Depth (LWD) -- Water depth in meters and feet below Low Water Datum
(IGLD, 1955) '

Loran-C --Y and Z station times for the 9960 Loaran-C navigation chain

Lat/long -- Latitude and longitude of sample station if available

Length -- Core length in feet/decimeters

TV -- Soiltest Torvane shear strength, measured in g/cm?~tons/ft?

PEN -- Soiltest Penetrometer compressive strength, measured in
kg/cm’~tons /ft?

NW -- Water content, weight percent water, of wet sediment sample

Depth -- Distance below top of sediment core measured in decimeters

Lith. Log -- Sediment type in core and inclusions

[F=] fluid mud/silt glacial-lacustrine A gravel
deposit
-] sand F fossil mollusk
[=4] till/laminated till A
sandy silty clay O organics
soft gray mud ~ laminations W wood

Description -- Notes on sediment type, including texture, color, additional
‘ sediment inclusions, and presence of articulated Sphaerium shells (Sa)
Size % Sa/Si/Cl -- Dry weight percent sand/silt/clay
Facies type -- General sediment type classification

M - fluid mud/silt  S-C - sandy silty clay
(transition unit in text)

S - sand C - soft gray mud

T & TR - till and till related
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APPENDIX B

Grain Size Analyses
Core # - Core number, see fig. 2 for location
Int. (cm) - Sample interval in centimeters from top of core
Sa/Si/Cl% - Dry weight percent sand/silt/clay: T = trace
Mdd¢ - Median phi of whole sample
Sand analyses
Me¢ - Phi mean as calculated by a modified version of the Benson
(1981) textural analysis program
SD¢ - Phi Standard Deviation (Benson, 1981)
Sk - Skewness of sand fraction (Benson, 1981)
Kt - Kurtosis of sand fraction (Benson, 1981)
Mdé¢ - Median phi of sand fraction if sand % is greater than 7.5% of
total sample
Int. Sa/Si/Cl Sand
Core # (cm) % Md ¢ Me¢ SD¢ Sk Kt Md ¢
CBC-3 20-30 11/72/17 5.3 592 223 0.27 2.88 2.8
110-120  3/81/16 5.8
230-240  2/48/50 >8.0
CBC-5 30-40 3/70/27 6.7
100-110  2/43/55 >8.0
200-210 T/31/69 >8.0
CBC-7 60-70 97/02/01 2.4 2.52 0.89 223 3434 24
120-125 18/39/43 7.4 7.07 3.06 -0.64 2.43 2.2
CBC-8 30-40 76/22/02 3.8 396 1.01 1.74 2236 3.7
66-77 20/40/40 7.0 6.85 3.14 032 2.36 2.1
CBC-9 20-30 52/30/18 3.9 5.39 2.52 044 239 3.6
90-100 4/75/21 6.4
170-175  22/40/38 7.0 6.71 3.17 024 231 2.1
CBC-13 20-25 25/40/35 6.7 6.42 3.30 023 2.10 2.2
CBC-15 30-40 7/63/30 6.6
120-130 1/48/51  >8.0
150-160 1/61/38 7.5
CBC-16 55-65 8/65/27 6.1, 671 229 014 19 3.7
200-210 21/36/43 7.3 684 334 -037 239 1.4
Int. Sa/Si/Cl Sand

=2



Core # (cm) % Md ¢ Me ¢ Sdé Sk Kt Md ¢
CBC-21 30-40 10/70/20 5.5 6.15 2.16 0.36 2.49 3.6
100-105 9/62/29 6.4 6.85 2.29 0.09 1.84 3.6
140-150 4/51/45 7.6
260-270 1/46/53 >8.0
CBC-22 30-40 21/63/16 5.0 573 2.23 040 275 3.6
95-105 4/52/44 7.6
135-145 11/40/49 7.9 7.66 2.66 -0.42 2.82 2.7
CBC-24 50-60 33/52/15 4.6 541 2.34 0.37 2.87 3.6
140-150 6/62/32 6.4
260-270 10/50/40 7.2 7.34 243 -0.10 1.69 3.5
CBC-26 30-40 5/53/42 7.6
120-130 1/56/43 7.7
230-240 5/75/20 5.9
CBC-27 30-40 3/53/44 7.6
80-90 1/57/42 7.4
170-180 2/58/40 7.4
260-270 4/42/54 >8.0
290-300 T/35/65 >8.0
CBC-30 30-40 2/78/20 5.7
150-160 T/48/52 >8.0
CBC-31 30-40 5/79/16 5.4
140-150 3/74/23 6.0
CBC-32 30-40 7/64/29 6.4
200-210 T/46/54 >8.0
CBC-34 30-40 11/37/16 5.5 590 2.32 0.09 3.03 1.9
110-120 2/85/13 5.7
160-170 18/39/43 7.4 7.11 3.03 -0.37 251 2.2
200-210 26/43/31 6.6 6.18 3.34 -0.23 2.11 1.6
CBC-36 30-40 5/76/19 5.9
90-92.5 1/71/28 6.8
120-130 T/50/50 8.0
240-250 1/41/58 >8.0
CBC-39 30+40 4/80/16 59 3
110-120 2/69/29 6.9
170-180 8/43/49 7.9 7.80 2.41 -0.38 2.60 3.1
255-265 3/41/56 >8.0
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Fine to medium sand

+Coarse lag
Glacial-lacustrine deposit
Glacial material Laminated tll
Lodgement till

Fluid mud/silt { color 5y3/1
sand/silt/clay % =6/67/27

increase in silt, color change
Transition sediments< shell debris sand grains

, color 5y4/1
Soft gray mud articulated Sphaerium bivalves
‘ sand/silt/clay %~ =2/51/47
shells and organics

Glacial material see section A

Figure 3. Typical sediment sequences.
A--Typical in shallow near shore areas and on top of the
Pelee-Lorain moraine.

B--Typical in the deeper central subbasin areas and east of
the moraine in the central basin.

(N
o~



‘panojd Os[e Jun By} 10} BBBIBAE UM POjoLId 1. SPiBl) JIun JUBWIPSS
‘sisAjeue |einjxs) wolj spun Juswipss jo sebejusotad Aed ‘s ‘pues /2 ainbi4

LS

pues

Aejo sunisnoe| @
I pejeuiwe]
1N eAlssew @
Jun uotysuel} A
pnw Aeib yos v

Wis/pnw ping O

sebeiony

Aepd

peieel
1eoelb ‘|eroeld |
Hun uoljisuel} A
pnw £eib jjos y
pues ¢
Ws/phwi pinj} @

v

sejdwes -

57



. ‘(yun jejoelb
e Buyoeal Jou 8100 8y} jJo Woy0q 8y uesaidal siaqwnu < ) jun |eoe|b
e |oeal Jou pIp Jey) uiseq ay) Ul $8100 Jo Jaquinu 8y} 0} anp alay paddew
uey) Jadasp aq pjnod uiseq jeloe|d Jeyl 8JON ‘ISE8 8y} UO suUleIOW UIBIOT
-98|84 8y} pue YINoSs 8y} uo puejurew ay) ‘1Sem 8y} uo spue|si Aq pajoisal
duieq pue eate Apn)s woiy piemyuou Buipusixa uiseqqns Ajsnpueg Bumoys
(sumsnoe|-jeroe|b payeuiwe) 10 |ji3) yun jejoe|b jo doy jo 1noJuod 8injonig ‘g ainbi4
wnjeq 18 MO M0|Bq S18}8W Uf sUoljeAs|e 08 :

) 8010 Auequel N : '
siejaw '} |BAIB|U} INOJUOD 8017 Allequel) _ iun feroe)6 Huiyoras Jou 8109 Jo Wooq jo Yidep £ pi<

NOHNH - eoeyns |epoelb jo yydep 2 vy
Nee1d pumeg OF UoHEDO| 0100 ¢

f AMSNANYS

\d 1epeD
‘Id Aeg

0f . "\ . c /s.(.l.ov : M/m

cbb 2 .
/ ) peeyejqiepy
%

sijewropy g 9 ¥ € 0

—t—t——t—
sepwy 6 ¥ £ ¢ 1 O

ZO_.__Emm;

g’ m—A

z_<m9. .
< \

—

oy __ —.0€

OFQ - NN\~ XN 77 7

0¥
-CH



‘SBA|BAIQ E::mmcqm. paje|noiye

nus u mwnz_oc_ sjun -soeuns |eioe|b ayy ul Buyy ‘exe) Buissaibsuen -

ul pausodasp nun jeroe|b-1so4 “suielow ayj jJo do} uo pue aloysiesu
ey ur Buissjw sy yun "pnw Aeib )os ay) jo doj uo inojuod ainPnis "0 8inbiy

winjeq 18jeA MO Mojeq S18jeu. uj suoljene|e P

$10)9W §'0 |EAIB}UL INOJUOD Neesd Auequerd _ nun pnw-£eib }Jos JO Jue)Xe e mum

pnw Aesb Yos jo doj o) yidep 'l

siejowopy g 9 ¥ ¢ 0 - NOHNH uojjeoo| 8102 .
bttt < Yeesn pumesg OF
seps g ¥ € ¢ + O ow
NOIMINHEA —~— ~
-!\»v\t}[.[\t\l)\\l/b I ~ IMSNANYS
~
v IEL /
NIVHOT "I1d teped
<1 ‘Id Aeg
— 0
N /\(
384
peeyejqIen
T~
"y

s| sAejje)

—,0€

or .
oI



‘uiseg a13 ay)

ybnouy) ebeuresp sexe| saddn ay) jo isjsued) pides ay) Aq pasned uonisodap

pueB UOIS018 8y} JO JINSal 8y} Sem Jun Siy| "8Ioys Jeau a8y} ul pue aueiow
8y} Uo Jiun uoljisuel} JO XOB| 810N ‘Hun uolisuel} jo doy Jo 1NojU0d aInjoNlS ‘| 8inbiy

1

wnjeq 10)e | MO} Mojeq S18]eL Ul SUOljeAs|e oS
. ea1n Auequery HUN UOIISURI] JO JUBIXE e wmm
s1ej9W §'0 [eAIB|Ul INOJUOD 39810 quetd _ Jun uoysUEl Jo do} 0} uidep S'€L

NOYnNH uojjeooj 8409 0
“_ YeeiD umeg OF

%aoz%
Id 1epe)

4, \d Aeg

sieyewoly g m w Nr 0

of
1

—

mm__EmrmmPc 0z

]
NOITIWHIA

NIVYHO1 .
< o
+ g - .o¢
.om 0. 1/\/\
b Q )
/ ) Peeys|giey
<
§
Eet S
] K~
)
IS
l¢
VA

\ //W. S| sAejjo)

\

Ly 0¢

-ov e——— - Il!..'l . !
¥

O

S0



‘seale Jadasp ay) ul Buyyy ‘uiseqgns ayy jo adojs
8y} 8INW 0} SPUB) YdIyM I18JUB2 UISBAQNS By} Ul 1S8XIY) SI 1] "UON08S J8lem
-Jadesp sy} ul yun 1sounaddn sy} S| |is/pnw pinj4 "yoedos! ijis/pnw pinj4 "G 81nbig
wnjeq 1ejep MO Mojeq S18j0W U] suoljeAe|e 08
siejew §'Q [EAI8)U] JNOJUOD yee19 Auequerd _ SJeleww Ul Jjis/pnw pinjj Jo sseuoly) Gl

u
) ' 2 o NOHNH 01)e00] 8102 °
1 L .

siejpwopy g 9
i 1
14

¥ee1) jumeg OF

| T 1
se|w g g ¢ L 0 0z
1]
NOITIWHIA

=

AMSNANVYS

NIvHOT ‘Id tepe)
ﬂl ‘Id Aeg
- .Ov
_Oﬂ — /\l\ ;
J pesyejqiey WW ,
s} sA8|e) . , .
. o [
retoef
! uo pues
©0BLNS U0
1'0 uogisuen
oy . M. +! —.0€
b - -~
ov

-G8



(12A8] DS 3A0Q0 S3.13W) UCHDAI|T

Gl

(01074

062

1

G861 ‘Bllsue pue unj|e) pue Gge| ‘Neauleg woij payIpon
‘6961 ‘SIMOT ¢ .GB6L ‘SimeT pue
fepeo) , ‘G861 ‘Neuseq | ‘soyey ui s18|ino 8jqeqo.d ‘uiseq el exe ey}
10} seAn9 Auenodai [ejoe|B-1sod pesodoid eyl pue seseud e [Aseduy ‘9 ainbi

(luasaid aJojoq s0ak Ol%) own)

(6] | Z < 14 S 9 L 2] G Ol I cl €l vl Gl
[ 1 1 1 1 ] t ] i 3 1 Il 1 1 1 )
ﬁn oot
orejjyng
‘atxd eyerr Atxed '
- 006G
orejjyng
orejjng .Ju—.um:maa
!9733 o)ed1 Aep-juasaid <
YMeYOW
!(8T117AUUNG ®)e]) uynbuoBiy ATxed » 009
N
XMeyoN !Apunry
YMePYON !oI0ussean »
A37TPA YMPYOW !BukeM ¥ AsrreA
Aarrea puern ..:wuumzlﬁ puerd
u..mcoxud- 004
yr
Atrqn !KeseraaTym
Aejur jJo yjaoN audem jaoq !assuney
- 008

(1ana] Das aACQD 133)) UOIIDAR|T -












